
Issued by: Siemens PLM Software. © 2018. Siemens Product Lifecycle Management Software Inc. All rights reserved.

Unrestricted

Microsoft SQL Server for Teamcenter Best Practices

How well the database server instance is tuned, as well as

how memory, disk, and operating system components are

configured has a direct impact on the Database Tier’s

performance. Monitoring and tuning of the database along

with vendor configuration guidelines (best practices) are

captured in the Teamcenter Deployment Guide. MS SQL

includes a number of built-in performance reports accessible

via MS SQL Management Console.

White Paper

A Technical White paper describing Teamcenter’s
best practices for use in a Microsoft SQL DB
environment.

Issued by: Siemens PLM Software. © 2017. Siemens Product Lifecycle Management Software Inc. All rights reserved.

Unrestricted

White Paper | Microsoft SQL Server for Teamcenter Best Practices

2

 Software Copyright and Trademark Notices

© 2018 Siemens Product Lifecycle Management Software Inc. All Rights Reserved. No

part of this document may be copied, reprinted, or distributed without the written

permission of Siemens Product Lifecycle Management Software Inc. (“Siemens PLM

Software”), except that entities with a Teamcenter Maintenance Agreement in force may

reproduce this document for their internal use only.

Siemens PLM Software Teamcenter and Transforming the process of innovation are trademarks

or registered trademarks of Siemens PLM Software or its subsidiaries in the US and in other

countries. Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems

Incorporated in the United States and/or other countries. All other trademarks or registered

trademarks belong to their respective holders.

This software and related documentation are proprietary to Siemens PLM Software.

Note: The pages of this document are numbered consecutively 1…N without the usual

Roman numeral numbering of the front matter. This makes the document’s page

numbers consistent with the numbers displayed by the Adobe® Acrobat® viewer and

simplifies printing of page ranges from Acrobat.

For Teamcenter Customer Support, contact the Siemens PLMS Global Technical Access

Center at

800-955-0000 or http://support.ugs.com.

Printed in the United States of America. 6/22/18

Issued by: Siemens PLM Software. © 2018. Siemens Product Lifecycle Management Software Inc. All rights reserved.

Unrestricted

White Paper | Microsoft SQL Server for Teamcenter Best Practices

3

Disclaimer

This document is intended to provide guidance and best practices for Microsoft SQL Server.

Siemens PLM Software is providing this information as is, without warranty of any kind.

SIEMENS PLM SOFTWARE hereby disclaims and assumes no responsibility or liability

for any results that occur due to the use of the information contained in this document.

Issued by: Siemens PLM Software. © 2017. Siemens Product Lifecycle Management Software Inc. All rights reserved.

Unrestricted

White Paper | Microsoft SQL Server for Teamcenter Best Practices

4

DOCUMENT HISTORY

Version Date Author Description

1.0 11/12/2018 P. Kessler DRAFT

1.1 3/9/2018 P. Kessler Revision

1.2 6/5/2018 P. Kessler Edits

1.3 6/22/2018 T. Goerdt Edits

Contributors

Version Date Contributor Description

1.0 12/19/2018 D. Howe Additional Content

1.1 3/9/18 D. Howe Additional Content

1.3 6/22/2018 T. Goerdt, E
Danielson

Additional Content

Reviewed By

Version Date Reviewed By Description

1.0 3/6/18 T. Goerdt Completed Review

1.0 3/6/18 E. Danielson Completed Review

1.1 3/9/18 D. Howe Completed Review

1.3 6/22/2018 T. Goerdt /

E. Danielson

Completed Review

Issued by: Siemens PLM Software. © 2017. Siemens Product Lifecycle Management Software Inc. All rights reserved.

Unrestricted

White Paper | Microsoft SQL Server for Teamcenter Best Practices

5

Table of Contents

1 INTRODUCTION 7

2 PLANNING AND INSTALLING THE SQL SERVER INSTANCE 8

2.1 SELECT THE APPROPRIATE SQL SERVER EDITION 8
2.2 OPTIONS FOR HIGH AVAILABILITY 8
2.2.1 ALWAYS ON AVAILABILITY GROUPS 9
2.3 WHICH FEATURES TO INSTALL 9
2.4 PROPER PLACEMENT OF THE TEMPDB DATABASE 9
2.5 MOVING TEMPDB 10
2.6 USING MULTIPLE, DEDICATED DISKS 10
2.7 SIZING TEMPDB 10
2.8 ADDING DATA FILES TO TEMPDB 11
2.9 INSTANT FILE INITIALIZATION 12
2.10 TRACE FLAGS 12
2.11 CONFIGURING MEMORY FOR SQL SERVER 12
2.12 MAXIMUM DEGREE OF PARALLELISM 13

3 INSTALLING TEAMCENTER DATABASES 14

3.1 FILE PLACEMENT ON THE DISK SUBSYSTEM 14
3.2 SIZING DATA FILES UP FRONT 14
3.3 SPREAD THE PRIMARY FILEGROUP ACROSS FILES ON MULTIPLE DISKS (OPTIONAL) 15
3.4 USE DATA COMPRESSION (ENTERPRISE EDITION ONLY) 16

4 ADJUSTING SQL SERVER AND DATABASE SETTINGS 16

4.1 VERIFY DATABASE COLLATION 16
4.2 AUTOMATIC STATISTIC UPDATES, AUTO SHRINK, AND OTHER OPTIONS 16
4.3 CHOOSING A DATABASE RECOVERY MODEL 16

5 ONGOING MANAGEMENT 17

5.1 THE DATABASE BACKUP PLAN 17
5.2 SYNCHRONIZATION OF TEAMCENTER DATABASE AND FILE BACKUPS 19
5.3 MONITOR INDEX FRAGMENTATION AND DEFRAGMENT WHEN NECESSARY 19
5.3.1 SCRIPT RESOURCES 20
5.4 RUN THE TEAMCENTER INDEX_VERIFIER TOOL 21
5.5 PERIODICALLY CHECK DATABASE INTEGRITY 21
5.6 MONITOR SPACE USED 21
5.7 USE SQL SERVER AGENT JOBS AND ALERTS 22

Issued by: Siemens PLM Software. © 2017. Siemens Product Lifecycle Management Software Inc. All rights reserved.

Unrestricted

White Paper | Microsoft SQL Server for Teamcenter Best Practices

6

6 TOOLS FOR MONITORING DATABASE SERVER PERFORMANCE 22

6.1 SQL TRACE 22
6.2 SQL SERVER PROFILER 23
6.3 EXTENDED EVENTS 23
6.4 SQL SERVER ACTIVITY MONITOR 24
6.5 STANDARD DATABASE REPORTS IN MANAGEMENT STUDIO 25
6.6 PERFORMANCE MONITOR 25
6.7 PAL (PERFORMANCE ANALYSIS OF LOGS) 26
6.8 DYNAMIC MANAGEMENT OBJECTS 26
6.9 DATABASE ENGINE TUNING ADVISOR 27
6.10 DISKSPD 27
6.11 LIVE QUERY STATISTICS 27

7 KNOWN ISSUES 28

7.1 GHOST RECORDS 28
7.1.1 HOW TO PREVENT GHOST RECORDS FROM BEING AN ISSUE 28
7.2 CARDINALITY ESTIMATOR BUG 28

8 CHECKLIST 29

9 LINKS FOR FURTHER INFORMATION 31

Page 7

White Paper | Microsoft SQL Server for Teamcenter Best Practices

7

1 Introduction

Among the strengths of SQL Server as a database platform is the relative simplicity of managing

and tuning the database engine. There are, nevertheless, a range of best practices for managing

SQL Server production deployment and for getting the best performance and reliability from the

platform. Many of these are standard, irrespective of the Teamcenter application, while some

specific guidance is driven by the nature of the Teamcenter database and application.

The following sections discuss a range of best practices and recommended choices for

Teamcenter deployments on SQL Server.

Page 8

White Paper | Microsoft SQL Server for Teamcenter Best Practices

8

2 Planning and Installing the SQL Server Instance

Use a Dedicated Database Server and SQL Instance

Because Teamcenter is a database-intensive application, Siemens recommends hosting the SQL

Server database on a server dedicated to that purpose. This will prevent the Teamcenter database

workload from having to compete for CPU, memory, network, and I/O with other processes.

2.1 Select the Appropriate SQL Server Edition

Teamcenter 9.1 can run on either the Standard or Enterprise Edition of SQL Server 2008 R2 and

TC 9.1.1 added support for SQL Server 2012.

Teamcenter 10.1 can run on either the Standard or Enterprise Edition of SQL Server 2008 R2,

SQL Server 2008 R2 SP2, SQL Server 2012 and TC 10.1.5 added support for SQL Server 2014.

Teamcenter 11.1 can run on either the Standard or Enterprise Edition of SQL Server 2012, SQL

Server 2014 and TC 11.3 added support for SQL Server 2016.

Regardless of version and edition, you should always run on the latest SQL Server service pack,

which you can find in the Downloads section of the SQL Server Developer Center. For most

functional aspects of Teamcenter, SQL Server Standard and Enterprise editions are equivalent.

However, the Enterprise Edition of SQL Server includes a variety of higher-end features.

Consult the Microsoft website for a current list of differences for your proposed version of SQL

Server as these features may change with newer releases.

2.2 Options for High Availability

SQL Server has several approaches for maintaining database availability in the event of a system

failure. The most sophisticated methods, and the only ones that provide automatic switchover to

a standby server in the case of failure, are failover clustering and database mirroring. Other

options, which require more manual intervention by administrators, include log shipping and

SQL Server replication.

Siemens recommends a high availability strategy based on failover clustering as the preferred

approach. However Microsoft are rapidly replacing clustering with AlwayOn availability groups

using synchronous replication and automatic failover. This method should avoid many of the

failover caused by the standard clustering.

The use of database mirroring (without automatic failover) and log shipping are viable options as

well especially for disaster recovery. However, administrators must be prepared for the need to

manually intervene to redirect Teamcenter to a standby server if the primary server experiences a

failure.

Page 9

White Paper | Microsoft SQL Server for Teamcenter Best Practices

9

2.2.1 Always On Availability Groups

The feature known as Always On is a high availability and disaster recover feature that was fully

introduced in SQL server 2012. This feature maximizes the availability of a set of user databases

in an enterprise. The availability group supports a failover environment for a set of databases that

fail over together. The availability group supports a set of read-write primary databases and one

to four sets of corresponding secondary databases. Optionally secondary databases can be made

available for read-only access and some backup operations.

There are some specific issues around using Always On and Teamcenter using asynchronous

commit and automatic failover, however there is a project to fully support this feature in

Teamcenter 12. If a customer chooses to use the Always On feature for high availability and

automatic failover it should be configured to utilize a synchronous commits. For a remote

Disaster recovery system the system should be configured with asynchronous commit for best

performance.

2.3 Which Features to Install

SQL Server includes a rich array of components for data management and business intelligence.

A minimal installation for Teamcenter requires only the SQL Server Database Engine and

Management Tools. These selections are made in the Feature Selection step of the SQL Server

setup. Consult the latest version of the Teamcenter Windows Server Installation documentation

section on Microsoft SQL Server installation for a list of required features for your Teamcenter

version.

2.4 Proper Placement of the tempdb Database

Tempdb is a built-in database used by SQL Server as a workspace for temporary objects. These

objects could be temporary tables resulting from application code, internal sort tables used by

SQL Server, or a variety of other things. Depending on the load and usage patterns in a given

environment, the configuration of tempdb can become a factor in overall performance. For this

reason, there are some important best practices for managing this database.

These tempdb best practices can be boiled down to a few key points:

1. Move tempdb from its default location to one or more high-performance, fault-tolerant

disk volumes.

2. If possible and practical given your disk resources, give tempdb files dedicated use of

their disk(s).

3. To minimize auto growth, configure the startup size of tempdb based on your server’s

needs. Frequent auto growth can hurt performance.

4. Create multiple data files for tempdb to reduce contention in the engine’s internal

allocation routines.

Page 10

White Paper | Microsoft SQL Server for Teamcenter Best Practices

10

5. Enable instant file initialization.

We’ll review the guidelines around each of these and then provide an example that brings it all

together.

2.5 Moving tempdb

By default, tempdb files are located in the same directory as SQL Server’s other system

databases. For busy servers, this is usually sub-optimal. Tempdb should be moved to a high-

performance, fault-tolerant disk volume—a RAID 1 or RAID 10 volume on fast disks, for

example. Tempdb should never be placed on a RAID 5 volume because of the inferior write

performance of RAID 5.

SQL Server must be restarted for this change to take effect. Note that SQL Server creates fresh

copies of tempdb data and log files every time the service starts, so there is no need to move any

files yourself. Just restart the service, and you will see the files in the new location(s) you have

specified.

2.6 Using Multiple, Dedicated Disks

If your database server has sufficient disk resources and your server is heavily utilized, typical

best practices for database file placement should be followed for tempdb. The following table

summarizes these best practices.

If You Have… Then…

One disk volume available for tempdb Place all tempdb data and log files here,

preferably with no other heavily utilized files

on this volume.

Two disk volumes available for tempdb

Place the tempdb log on one volume. Place all

tempdb data files on the other volume.

More than two disk volumes available for

tempdb

Place the tempdb log alone on one volume.

Distribute tempdb data files evenly across the

remaining volumes.

2.7 Sizing tempdb

Tempdb is used very dynamically by SQL Server. In other words, the server is constantly adding

and removing structures in tempdb. At any given time, some operation may cause a (relative)

spike in the required size of the database. If tempdb starts out too small given your workload, the

result may be a large number of frequent auto growth operations in tempdb. This has two

negative side effects. First, performance can be hurt when the auto growth actually occurs.

Page 11

White Paper | Microsoft SQL Server for Teamcenter Best Practices

11

Second, many small auto growths will result in heavily fragmented data files, which hurts

tempdb I/O performance from that time forward.

To avoid these problems, the size of tempdb should be set proactively as appropriate for the

environment. There is no fixed rule for the size of tempdb—it depends on the environment. Two

potential approaches are recommended here. The first is to use an arbitrary rule of thumb, and

the second is to observe your environment in action and derive appropriate sizing. DBAs should

monitor usage over time to see if configuration changes become needed.

 Small Database – 2GB

 Medium Database – 5GB

 Large Database – 10GB

The second approach—observation of the environment in action—starts with leaving tempdb

sizes at their default level with auto growth enabled. After a reasonable period of production

activity (one or more weeks, for example), the DBA should check the space used by tempdb. The

size of tempdb can be viewed in SQL Server Management Studio.

The DBA can use the size to which tempdb data and log files have grown as a good indicator of

target size. Adding an additional 20% buffer can help ensure that auto growth is minimized.

Finally, whatever size you choose for tempdb, it is a good idea to leave auto growth enabled on

the database. Minimizing auto growth is a goal, but you want to leave auto growth enabled so

that tempdb does not run out of space in an emergency.

More discussion of sizing tempdb can be found on MSDN.

2.8 Adding Data Files to tempdb

By default, the tempdb database has one data file (.mdf) and one log file (.ldf). A best practice

for large, multi-core servers is to increase the number of files in tempdb. This can reduce

contention in SQL Server’s internal allocation routines related to tempdb. There are essentially

four points to consider when doing this:

1. Aim for one tempdb data file per processor core available to SQL Server. For systems

with more than 16 CPUs, it is safe to relax this ratio closer to 0.5 files per core but no

more than 8.

2. Ensure that the data files are equally sized. This allows SQL Server’s proportional fill

algorithms to run at their most efficient.

3. The data files need not all be on separate disk volumes. The purpose of this

recommendation is not to split I/O throughput across devices, but to exploit some aspects

of the Database Engine’s internal I/O and allocation algorithms. This is a bit

counterintuitive and differs from the guidance for user databases, but it is intentional.

Page 12

White Paper | Microsoft SQL Server for Teamcenter Best Practices

12

4. There is no need for multiple log files.

2.9 Instant File Initialization

Enable instant file initialization for the benefit of data file space allocations. This will speed up

space allocations in tempdb data files, increasing query performance.

2.10 Trace Flags

 Trace Flag 1118 - Full Extents Only

KB 2154845 advises that Trace Flag 1118 can help in some situations. That trace flag

tells SQL Server that it should avoid “mixed extents” and use “full extents”.

This means that each newly allocated object in every database on the instance gets its

own private 64KB of data. Tempdb is usually the place where most objects are created,

so it makes the most difference there.

 Trace Flag 1117 – Grow All Files in Filegroup Equally

Trace flag 1117 changes the behavior of file growth: if one data file in a filegroup grows,

it forces other files in that filegroup to ALSO grow. This can be useful for tempdb, which

is commonly configured with multiple data files as KB 2154845 advises.

Implementing this trace flag impacts every database on the instance and not just tempdb.

Some administrators may prefer to pre-grow tempdb files so they fill the tempdb drive,

ensuring to leave room for any “free space monitoring” you have.

Note: Both of these are now defaults for SQL Server 2016, so they will need to be set in earlier

versions. In Server 2016 this is controlled by controlled by SET

MIXED_PAGE_ALLOCATION.

2.11 Configuring Memory for SQL Server

SQL Server can dynamically manage memory without intervention by administrators. In many

cases, this is fine. For systems that will host large databases with heavy user traffic, however, it

may be necessary to set some limits on memory usage to prevent performance degradation.

A key indicator that this may be necessary is if the size of the Teamcenter database (actual data

space used) is significantly greater than the amount of RAM on the database server. Over time,

memory pressure may develop. SQL Server will want to continue growing its in-memory data

cache to avoid reading from disk, but the operating system will push back, trying to allocate

memory for itself and other processes. The result can be excessive memory paging and a

negative effect on performance.

Page 13

White Paper | Microsoft SQL Server for Teamcenter Best Practices

13

If your Teamcenter database (data + indexes) is or is expected to be much larger than the total

RAM on the database server, Siemens recommends configuring the min and max server memory

options in SQL Server. Use the recommendations in the following table to select values

appropriate for your environment.

Physical RAM SQL Min Server Memory

(MB)

SQL Max Server Memory

(MB)

8GB 4,096 5,120 (5GB)

16GB 8,192 12,288 (12GB)

24GB 12,288 18,432 (18GB)

32GB 16,384 25,600 (25GB)

48GB 32,768 39,936 (39GB)

64GB 49,152 56,320 (55GB)

96GB 73,728 88,064 (86GB)

128GB 104,448 120,832 (118GB)

256GB 235,520 251,904 (246GB)

The min/max server memory options can be set in the Server Properties dialog box in SQL

Server Management.

Another option to consider is granting the Lock pages in memory permission to the SQL Server

service account. This permission allows SQL Server to lock its buffer memory and refuse to page

it out in response to requests from the operating system. This can give the Database Engine

additional ability to preserve its caches and maintain performance, especially if other processes

are competing for resources on the server. However, Siemens recommends hosting the

Teamcenter database on a server dedicated to this purpose. If this recommendation is followed,

the importance of the Lock pages in memory permission is lessened. In addition, improvements

in memory management in newer versions of SQL Server and Windows Server make it less

likely that this setting will make a big difference.

2.12 Maximum Degree of Parallelism

Siemens recommends that the Max Degree of Parallelism option in SQL Server be set to 4 and

the cost threshold be set at 50. This will allow parallel to be used for some scanning queries, up

to 4. While the high cost threshold will make it rarely used with the exception of certain use

cases. This is preferable given the type of query workload that the Teamcenter application places

on its database. This value is set in the Server Properties dialog box in SQL Server Management

Studio.

Page 14

White Paper | Microsoft SQL Server for Teamcenter Best Practices

14

3 Installing Teamcenter Databases

3.1 File Placement on the Disk Subsystem

Before installing the Teamcenter database, Siemens recommends planning the placement of the

files that make up the database. In the default configuration, the Teamcenter database consists of

two files: a data file and a log file. It is general SQL Server best practice to place these files on

separate physical disk volumes to get the best performance from the overall system. These disk

volumes should also not be used for any other heavily accessed files or for the Windows

operating system.

It is critical that the disk volumes on which you place your database files be fault-tolerant RAID

sets. The ultimate safety of your Teamcenter data depends on the data and log files residing on

redundant physical disk storage. Siemens recommends RAID 10 (also called RAID 1 + 0) for the

data file. RAID 5 is acceptable. For the log file, RAID 10 or RAID 1 is recommended. The log

file should never be placed on a RAID 5 volume because RAID 5 has lower write performance

than the other RAID levels. The following table shows a summary of recommendations for

where to place the Teamcenter database files.

File Type Placement Recommended RAID

Level

Disk Speed

Data (.mdf, .ndf) Physically separate

disks or LUN from

the log Disk(s)

should not be used

for other heavy file

I/O

RAID 10 10,000 RPM or faster

SSDs are ideal

Log (.ldf)

Physically separate

disks or LUN from

data files Disk(s)

should not be used

for other heavy file

I/O

RAID 1 or RAID 10

RAID 5 is

discouraged for logs

10,000 RPM or faster

SSDs are ideal

Note that when placing data and log files on separate disk volumes, they should be truly

physically separate. The drive letters on which the files are placed should actually map to distinct

physical disk drive sets. Placement on different partitions/LUNs on a single disk drive set is not

helpful for performance or fault tolerance.

3.2 Sizing Data Files Up Front

Most Teamcenter installations will see significant database growth over time. For best long-term

performance, Siemens recommends creating data and log files with a size that matches the long-

term size expectations of the Teamcenter database.

Page 15

White Paper | Microsoft SQL Server for Teamcenter Best Practices

15

If no explicit size is provided, SQL Server creates data and log files based on the size of a special

template database called model. Usually, this is just a few MB in size. As data flows in to the

Teamcenter database, SQL Server automatically extends the data and log files as needed. For

large, heavily used databases, this eventually produces data files that are highly fragmented on

disk. This fragmentation has a negative effect on performance. There is also a small run-time

performance penalty every time a file is extended.

These problems can easily be avoided by sizing files appropriately when the database is created.

The following guidelines are recommended for setting the initial size of database files.

1. Estimate long-term size of the Teamcenter database (e.g., 1-3 years).

2. Add 50% for small-sized databases (< 100GB). Add 35% for medium-sized databases (>

100GB). Add 25% for larger databases (> 500GB). This is the recommended data file

size.

3. Size the transaction log file at approximately 20% of the data file size.

Automatic file growth should be enabled for the database, even though the initial size ought to be

sufficient for some time. This is simply to avoid a production problem if the data files run out of

space. As a rule, though, file size for the Teamcenter database should be managed proactively.

Siemens recommends configuring data files for 5GB growth increments and log files for 1GB

growth increments. In particular, avoid using large percent-based growth settings on large log

files, because the initialization of new log segments can temporarily block activity on the

database.

3.3 Spread the PRIMARY Filegroup across Files on Multiple Disks
(optional)

For heavily used Teamcenter databases, overall performance can be affected by the throughput

limitations of working with a single data file on a single disk volume. With SQL Server, you can

easily spread I/O load for your Teamcenter database across multiple disk volumes or RAID sets

by mapping SQL Server filegroups to multiple files. The extra administrative work of setting this

up should only be done if you have confirmed that disk I/O is a bottleneck for your system. The

monitoring techniques discussed later in this paper can help in making that determination.

If you choose to add additional files to spread I/O across disks, there are a few things to consider.

First, Teamcenter creates all data objects (except optional audit logs) on the PRIMARY

filegroup, so this is the one you will want to map to the new files. Second, SQL Server balances

I/O most effectively when the files used by a filegroup are of equal size. Try to create all the files

that will host the PRIMARY filegroup so that they are the same size.

The Teamcenter database also contains a filegroup called ILOG. In the default database

configuration, ILOG is hosted in its own file. Objects in the ILOG filegroup are created and used

only if Teamcenter audit logging is enabled and configured to log to the database (rather than

Page 16

White Paper | Microsoft SQL Server for Teamcenter Best Practices

16

text files for older versions of Teamcenter). If your deployment is set up to log to the database,

you can expect heavy activity on this file. Therefore, if you use the database for audit logging,

Siemens recommends placing the ILOG data file on a separate disk volume from the main

data file and the transaction log.

3.4 Use Data Compression (Enterprise Edition only)

SQL Server Enterprise Edition includes the ability to natively compress its data pages on disk.

This can provide significant space savings on disk. Because it reduces the amount of disk I/O

done for a given amount of Teamcenter data, it also tends to improve performance. When data

compression is enabled, data pages are also compressed in the buffer pool (i.e., RAM). This

provides the additional benefit of increasing the effective amount of application data that can be

accessed from the data cache rather than disk.

Benchmarking with Teamcenter and SQL Server has shown significant performance increases

when data compression is used for the Teamcenter database. Siemens recommends using data

compression if your edition of SQL Server allows it.

4 Adjusting SQL Server and Database Settings

4.1 Verify Database Collation

When the Teamcenter database is created, it will assume the server collation (set when SQL

Server was installed) unless otherwise specified. It is a good idea to verify that the collation for

the database is the one the Teamcenter software expects. This can be verified in the Database

Properties dialog box in SQL Server Management Studio. The collation displayed in this dialog

box should be Latin1_General_BIN.

4.2 Automatic Statistic Updates, Auto Shrink, and Other Options

SQL Server uses internal statistics about the data stored in tables to decide which indexes, if any,

to use for most efficiently executing a query. As table data changes over time, these statistics

need to be kept current. Each SQL Server database has the option for these statistics to be

updated automatically (statistics update can also be initiated manually, if needed). Siemens

recommends that auto-update of statistics be enabled for the Teamcenter database. Both Auto-

Close and Auto-Shrink should be set to False.

4.3 Choosing a Database Recovery Model

The recovery model of a SQL Server database determines how changes are recorded and stored

in the database’s transaction log. The three options for the recovery model setting on your

Teamcenter database are Full, Bulk-logged, and Simple:

 Full recovery model: This is the best model for preventing critical data loss and

restoring data to a specific point in time, and it is generally used by enterprise production

Page 17

White Paper | Microsoft SQL Server for Teamcenter Best Practices

17

systems. If the transaction log is available, it is possible to get up-to-the-minute recovery

and point-in-time restore if the end of the transaction log is backed up and restored. The

trade-off for the Full recovery model is that it requires more administrator attention and a

more complex backup/restore strategy.

 Bulk-logged model: This model is for databases that have critical data, but for which the

DBA wants to minimize storage or performance impact of bulk operations (e.g., bulk data

loads, table copies, index maintenance). It provides nearly the recovery power of the Full

model, but with some limitations.

 Simple recovery model: This model is appropriate if the data backed up is not critical,

data is static or does not change often, or if data loss is not a concern for the organization.

If an active database is lost with the Simple recovery model, the organization loses all

transactions since the last full or last differential backup. This model is typical for test

environments or production databases that are not mission critical or have very light

activity.

In general, Teamcenter databases are frequently updated and hold information that is of high

importance to the organization. Especially for large Teamcenter databases, full backups may not

be feasible with high frequency (e.g., daily or more often). For these reasons, Siemens

recommends using the Full recovery model with Teamcenter databases. Administrators must be

aware of the management implications of the Full and Bulk-logged recovery models. In

particular, under these recovery models, transaction logs must be backed up regularly to prevent

them from filling up or exhausting available disk space.

5 Ongoing Management

5.1 The Database Backup Plan

Perhaps the single most important ongoing maintenance task for a business-critical database such

as Teamcenter is managing backups. Siemens recommends you carefully plan, document, and

test the backup and recovery strategy for the Teamcenter database.

The types of database backups allowed in SQL Server are:

 Full database backup: Contains all the data in the database, plus enough transaction log

information to allow for recovering that data.

 Differential database backup: Contains all the data changed since the last full backup.

Differential backups allow a smaller, faster backup to be taken, which can later be

combined with the full backup to restore the database to the time of the differential

backup.

Page 18

White Paper | Microsoft SQL Server for Teamcenter Best Practices

18

 Transaction log backup: Contains all the database changes since the last (full or

differential) database or log backup. Periodically backing up the log allows you to restore

the last database backup followed by subsequent log backups to recover to the latest point

in time needed.

 Database file or filegroup backup: Contains only data from specified file(s) or

filegroups(s) to allow quick, piecemeal restores if only part of the database is lost. These

types of backup are not recommended for Teamcenter deployments.

The different types of backup allow you to back up with the frequency appropriate to your

business requirements, even for databases that are very large. For example, a typical backup

strategy for a large database (e.g., several hundred gigabytes) might include a weekly full

backup, nightly differential backups, and transaction log backups every 30 minutes. If the

database were lost, the DBA would:

1. Restore the last full backup.

2. Restore all differential backups since the full backup, in sequence.

3. Restore all the transaction log backups since the last differential backup, in sequence.

If properly executed, this would return the database to operation with at most 30 minutes of work

lost.

For small databases, it is perfectly valid to simply perform full backups one or more times per

day. There is nothing inherently wrong with this approach, and it has the virtue of simplicity. But

it is only practical for databases that can be backed up very quickly.

Keep in mind also that for databases with the Full or Bulk-logged recovery model, regular

transaction log backups are required to keep the log from growing out of control.

The right backup strategy is dependent on the database size and level of change activity in your

installation. This can vary greatly, even across deployments of the Teamcenter product, so a one-

size-fits-all recommendation can’t be made here. However, keep the following in mind as you

plan your backup strategy:

 If you choose the Full recovery model, the transaction log can grow very quickly and

should be scheduled for backup at multiple times throughout the day. Performing

multiple backups ensures that the log is truncated frequently and provides for improved

data recoverability.

 If you choose the Simple recovery model, schedule full database backups for at least once

per day. With this method, data recoverability is limited to the last full database backup.

 Database backups should be stored off site when possible and appropriate.

 Back up a database immediately after you make extensive changes or perform non-

logged operations.

Page 19

White Paper | Microsoft SQL Server for Teamcenter Best Practices

19

 Be sure to include regular backups of the master and msdb databases as part of your

overall backup strategy. The master database contains information about the databases on

your system, and the msdb database stores information about scheduled jobs.

 If you are using SQL Server 2008 Enterprise Edition or later, use backup compression to

reduce the size of backups and the time required to take them.

Finally, remember that what you really need in an emergency is a restore, not a backup.

Therefore, plan restore with care, and test restoring your database from actual backups to

validate that you have covered everything.

5.2 Synchronization of Teamcenter Database and File Backups

Another point to consider when managing overall backup of the Teamcenter application is the

interaction between the SQL Server database and the file repository. The Resource Tier includes

both the Teamcenter database and the Teamcenter file server(s). A full and consistent backup of

the Resource Tier requires both database and file backups.

The Teamcenter database contains references (essentially file pointers) to content in the file

repository. To ensure maximum consistency between the database file references and the actual

content of the file repository, some attention must be paid to backing up both simultaneously.

Siemens recommends choosing one of three approaches to doing this:

 Option 1: Take cold backups—that is, take the system offline to halt user activity, back

up both the database and file repository, and put the system back online.

 Option 2: Take online backups and accept some small potential inconsistency. The

issues with this approach can be minimized if the backups are taken during periods of

low activity.

 Option 3: Use Teamcenter’s hot backup mode. In this mode, Teamcenter suspends

writing files directly to the file repository (they are held in a temporary location called a

Blobby Volume). File backups are taken, and the system is then returned to normal mode.

If a restore is necessary, SQL Server’s point-in-time restore capability can be used to

restore the database to the point in time when the system was placed in hot backup mode.

This will ensure consistency between the database and the file repository.

More information on this advanced topic is available from Siemens. You can talk with your

Siemens support professional, or refer to documentation at the Siemens Teamcenter GTAC

Support Site.

5.3 Monitor Index Fragmentation and Defragment When Necessary

SQL Server uses indexes to provide fast access to information when users or applications request

it. These indexes are maintained by the Database Engine as the table data grows and/or changes.

Over time, the indexes can become fragmented; especially in databases that handle heavy insert,

update, and delete activity. An index is “fragmented” when the physical ordering on disk does

Page 20

White Paper | Microsoft SQL Server for Teamcenter Best Practices

20

not match the logical order of the data (as defined by the index key) or when data pages that

contain the index are dispersed across non-adjacent sections of the disk.

Fragmentation of an index can reduce the speed of data access and result in slower application

performance. It can also cause more disk space to be used than is actually necessary. Index

fragmentation can be corrected by reorganizing or rebuilding the index.

You can tell which indexes, if any, have fragmentation problems by using the

sys.dm_db_physical_stats() system function. This function provides lots of details about the

physical layout of the index. However, the most important result column for tracking

fragmentation is avg_fragmentation_in_percent. This column indicates how fragmented the

index is on disk. A low number means low fragmentation (good); a high number means high

fragmentation (bad). Similar information is also available in the Standard Reports in SQL Server

Management Studio.

The following table indicates general guidelines for interpreting the

avg_fragmentation_in_percent value. A fragmentation report is also available by utilizing the

Teamcenter utility index_verifier, note the fragmentation report is only available when using MS

SQL Server.

Fragmentation Recommended Action

< 5% Do nothing

5% to 30% Reorganize with ALTER INDEX REORGANIZE

> 50% Rebuild with ALTER INDEX REBUILD WITH (ONLINE=ON) or

CREATE INDEX with DROP_EXISTING=ON

Reorganizing an index does not block user access to the index while underway. However,

rebuilding or re-creating the index does prevent user access to the index. The exception to this is

if the ALTER INDEX REBUILD statement is used with the ONLINE = ON option. Note that

online index rebuild requires the Enterprise Edition of SQL Server.

Periodically checking index fragmentation and taking any necessary corrective action is

important to maintaining the performance of your Teamcenter deployment. The rate at which

fragmentation may occur depends on user activity, but as a general rule, Siemens recommends

checking index fragmentation at least monthly.

5.3.1 Script Resources

There are several online resources for scripts to assist in these maintenance activities. One

popular resource is Ola Hallengren’s website https://ola.hallengren.com/sql-server-index-and-

statistics-maintenance.html which provides excellent examples.

Note: There is a problem with 11.2.1 fixed in 11.3. POM_M_LOCK has an index REF_UID and

ASPACE_UID, this causes plan problems. So drop index PIPOM_M_LOCK;

https://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html
https://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html

Page 21

White Paper | Microsoft SQL Server for Teamcenter Best Practices

21

create index PIPOM_M_LOCK on POM_M_LOCK("REF_UID"); (PR 8005808)

5.4 Run the Teamcenter Index_Verifier Tool

Siemens provides an index_verifier utility, packaged with all versions of Teamcenter that can

analyze your Teamcenter database for missing indexes. If missing indexes are found, the

index_verifier utility will provide SQL output that you can use to create the needed indexes.

Siemens best practice is to run this utility at least monthly.

Siemens also recommends adding additional indexes you may require by using the install

command-line utility provided with Teamcenter. Doing so will register the index as part of the

Teamcenter schema, at which point the index_verifier utility can check for its existence. If you

manually add indexes to the Teamcenter database, index_verifier will have no knowledge of

them, and it will be your responsibility to ensure that those indexes are carried forward and

maintained.

Full documentation of these utilities can be found in the Teamcenter Utilities Reference Manual,

available on the Siemens Teamcenter GTAC Support Site.

5.5 Periodically Check Database Integrity

For all the sophisticated data management techniques embedded in the SQL Server Database

Engine, there is still the possibility of some corruption occurring in a database, most notably as

the result of a hardware glitch. To head off the potential impact of such problems, you should

regularly check the integrity of the database. The statement for doing this in T-SQL is DBCC

CHECKDB.

It is best to include database integrity checks in a scheduled job that executes DBCC

CHECKDB, or do it with a scheduled Maintenance Plan that includes the Check Database

Integrity task.

If any problems are detected, you can restore from backups (usually the best option) or use one

of the REPAIR options on DBCC CHECKDB.

5.6 Monitor Space Used

Over time, the space used in your Teamcenter database for data and indexes will increase.

Regardless of the initial space allocations you have made, you will need to occasionally check on

the amount of space remaining in data and log files as well as on the host disk volumes.

Space consumed and remaining for the Teamcenter database can easily be checked using the

Standard Reports in SQL Server Management Studio. The Disk Usage report displays the

currently reserved space in data and log files and the amount that is in use. This is also a handy

place to check for any recent data or log file growths. If these are occurring, it could be a sign

that a rearrangement or expansion of data files is necessary.

Page 22

White Paper | Microsoft SQL Server for Teamcenter Best Practices

22

Details on space usage can also be obtained via T-SQL by using the sp_spaceused stored

procedure.

5.7 Use SQL Server Agent Jobs and Alerts

Many of the ongoing database management and monitoring tasks required to administer your

Teamcenter database can and should be automated. SQL Server includes SQL Server Agent, a

job scheduling and alerting service that is tightly intertwined with the SQL Server database

engine. SQL Server Agent can be used to schedule regular backups, database integrity checks,

index reorganization jobs, and many other routine tasks. It can also be used to check database

engine metrics and alert someone if they are outside normal bounds.

SQL Server Maintenance Plans also provide a neatly packaged way to define and schedule

routine management tasks for a database or for multiple databases.

Siemens recommends making use of these tools to configure automated maintenance and

monitoring tasks for the Teamcenter database.

6 Tools for Monitoring Database Server Performance
Once your Teamcenter database is in production, it is important to establish a baseline of its

normal performance characteristics and to check its health and status periodically. The following

sections discuss some of the tools and techniques available for monitoring database server

performance.

6.1 SQL Trace

SQL Trace is a server-side, event-driven activity monitoring tool; It can capture information

about more than 150 event classes. Each event returns data in one or more columns and you can

filter column values. You configure the range of events and event data columns in the trace

definition.

You can also configure the destination for the trace data, a file or a database table, in the trace

definition. You can use it to:

• Understand the duration, frequency, and resource usage of queries.

• Gather a baseline or create a benchmark for a system’s activity.

• Troubleshoot application errors and performance problems.

• Audit user activity.

SQL Trace is included in SQL Server 7.0 and later versions.

Page 23

White Paper | Microsoft SQL Server for Teamcenter Best Practices

23

6.2 SQL Server Profiler

SQL Server Profiler is a GUI for creating SQL traces and viewing data from them. SQL Server

Profiler is included in SQL Server 7.0 and later versions.

Important Note: SQL Trace and SQL Server Profiler have been marked for deprecation since

SQL Server 2012. SQL Server 2016 includes SQL Server Profiler and SQL Trace, but Microsoft

has declared an intention to remove both tools in a future version of SQL Server. Extended

Events is now the recommended activity tracing tool.

6.3 Extended Events

Like SQL Trace, Extended Events is an event-driven activity monitoring tool; however, it

attempts to address some of the limitations in the design of SQL Trace by following a loose-

coupled design pattern. Events and their targets are not tightly coupled; any event can be bound

to any target. This means that data processing and filtering can be carried out independently of

data capture. In most cases, this results in Extended Events having a lower performance overhead

than an equivalent SQL Trace.

With Extended Events, you can define sophisticated filters on captured data. In addition to using

value filters, you can filter events by sampling and data can be aggregated at the point it is

captured. You can manage Extended Events either through a GUI in SQL Server Management

Studio (SSMS) or by using TransactSQL statements.

Extended Events was introduced in SQL Server 2008; since the deprecation of SQL Trace and

SQL Server Profiler was announced with the release of SQL Server 2012, many features

introduced in SQL Server 2012, 2014 and 2016 can only be traced using Extended Events.

Extended Events replaces SQL Server Profiler and SQL Trace. You can therefore use it to

perform regular monitoring, such as the following:

• Troubleshoot blocking and deadlocks.

• Find resource-intensive queries.

• Capture dynamic-link library (DDL) statements.

• Capture missing column statistics.

You can also use Extended Events to collect information that you were not able to monitor with

SQL Trace. You can now:

• Observe page splits.

• Monitor session-level wait statistics.

• Monitor stored procedures that exceed the last CPU, I/O, and execution times.

• Observe the proportional fill algorithm that is used to fill data in data files.

Although Extended Events is a lightweight logging framework, each active session has an

overhead of CPU and memory resources. You should get into the practice of only running

Extended Events sessions you have created when you have to troubleshoot specific issues.

Page 24

White Paper | Microsoft SQL Server for Teamcenter Best Practices

24

6.4 SQL Server Activity Monitor

A good, easy-to-use starting point for monitoring your SQL Server instance is the Activity

Monitor in SQL Server Management Studio. This pulls several key pieces of information

together into one view. Although it does not provide highly detailed insight on its own, it can be

a good part of your SQL Server monitoring toolbox.

To open Activity Monitor, right-click the server icon in the Object Explorer pane of SQL Server

Management Studio and select the Activity Monitor item. There is also a button for Activity

Monitor on the Standard toolbar in SQL Server Management Studio. The Activity Monitor will

open as a new tab in the main Management Studio window.

The Overview section, at the top, shows summary graphs of four key metrics for getting a sense

of the load on the server. % Processor Time is an average of CPU utilization across all

processors. Waiting Tasks shows the number of tasks waiting on CPU, memory, disk, locks, or

other resources. The Database I/O graph shows overall disk I/O throughput of SQL Server. Batch

Requests/sec shows the number of individual T-SQL batches executed per second (e.g., SQL

statements or stored procedures calls from applications).

The other sections (also called panes) in the Activity Monitor window provide detailed snapshots

about different aspects of the Database Engine’s current workload. A full discussion of these

sections and how to interpret the information provided is well beyond the scope of this paper.

However, a brief introduction to each section is provided here.

The Processes section presents a list of the active user connections to the server. For each

connection, useful troubleshooting information is provided, including the current database the

connection is using, what resource the connection is waiting on (if any), and whether the

connection is blocked by another connection. The Processes section is thus useful for getting an

idea of the number of active connections and what sort of performance roadblocks they may be

experiencing.

The Resource Waits section provides a summary of the “waits” the Database Engine is observing

in current activity. Examples of waits are network I/O for clients to pull results across the wire,

disk I/O for the server to pull data from disk into buffer memory, or lock waits while one

connection waits on a transaction lock held by another connection. Besides the type of wait, this

section shows the cumulative and recent amount of time spent on this type of wait and the

number of connections experiencing it. This information is just a coarse summary of a highly

detailed set of tuning information available from SQL Server wait statistics. It can be quite

useful, though, to get an indication of system bottlenecks at a glance.

The Data File I/O section lists all data and transaction log files in use by databases on the current

SQL Server instance. With each file, recent read and write throughput (in MB/sec) is reported.

The last column in this section is particularly interesting. The Response Time (ms) column

reports disk latency for I/O against the file. This is a good number to look at to begin an

investigation of whether a workload is I/O bound.

Page 25

White Paper | Microsoft SQL Server for Teamcenter Best Practices

25

Finally, the Recent Expensive Queries section lists some of the most expensive queries the

engine has recently executed. Besides the query text, average execution metrics are listed for

each.

6.5 Standard Database Reports in Management Studio

Another easy-to-use resource is the set of database Standard Reports in SQL Server Management

Studio. These reports are accessible by right-clicking the icon for the Teamcenter database in the

Object Explorer pane and selecting Reports > Standard Reports. The reports available on the fly-

out menu provide basic and advanced information on many aspects of the database.

6.6 Performance Monitor

Performance Monitor is a Windows management snap-in you use to analyze system

performance. It can be used for real-time monitoring of current system performance and to log

data to be analyzed later. It provides different counters that are categorized into objects to

monitor Windows and other applications that are running on the Windows operating system.

SQL Server makes a large number of performance counters available to Performance Monitor to

make it easier for you to monitor SQL Server activity and Windows activity from one place.

Some examples of SQL Server performance counters that are typically used when examining

SQL Server performance are:

• SQL Server: Buffer Manager: Buffer Cache Hit Ratio

• SQL Server: Buffer Manager: Page Life Expectancy

• SQL Server: SQL Statistics: Batch Requests/Sec

• SQL Server: SQL Statistics: SQL Compilations/Sec

• SQL Server: SQL Statistics: SQL Recompilations/sec

Note: In most cases it is expected that you will see page life to be very long, in some cases days

if the system has a large amount of memory. However, you may see drops when various

administrative functions are performed. If you see drops in life expectancy during periods of

high database utilization then that indicates that you need more memory in the system.

It is good practice to establish a baseline understanding of the performance of your database

system after it is deployed. This will allow you to better understand issues if your system runs

into performance or other problems later. By comparing observed behavior in a problem

situation to your baseline expectations, you’ll more easily be able to focus in on the root cause.

Note that if you are using a named instance of SQL Server, the name of the object in

Performance Monitor will be slightly different. For default (not named) instances, the object

name is SQL Server: <object>. For a named instance, the object name is

MSSQL$InstanceName: <object>.

Page 26

White Paper | Microsoft SQL Server for Teamcenter Best Practices

26

6.7 PAL (Performance Analysis of Logs)

PAL is not a tool that ships with SQL Server, rather it is an independently developed utility

available for free that will analyze any metrics gathered with the Performance Monitor. PAL can

be configured to analyze SQL specific metric data via templates and output a report in HTML

format. For more information on PAL including current versions search for the project on

GitHub.

6.8 Dynamic Management Objects

Dynamic Management Views (DMVs) and Dynamic Management Functions (DMFs) can

provide insight into the internal state, health, and performance of SQL Server through

Transact-SQL queries. They provide useful information that can be used to identify, diagnose,

and fix SQL Server performance issues from counters and metrics that SQLOS collects. Each

Dynamic Management Object (DMO) will return data either at server scope or database scope.

There are more than 200 DMOs in SQL Server 2016. DMOs can be found in the sys schema;

their names start with “dm”. They are further divided into other categories based on the kind of

information that they return. Some of the most useful DMO categories that you can use when

performance tuning SQL Server are listed here:

 sys.dm_exec_*. This set of DMVs contains information that relates to the execution of

user queries. They are useful in diagnosing blocking, deadlock, long running queries,

CPU intensive queries, and so on. For example, sys.dm_exec_requests returns

information about currently executing requests.

 sys.dm_os_*. This set of DMVs gives details about SQLOS operations; that is, memory

management and scheduling. For example, sys.dm_os_wait_stats returns aggregate

information about all of the waits that have been incurred on an instance of SQL Server.

The sys.dm_os_schedulers DMV returns one row per scheduler and is used to monitor

the health and condition of the scheduler, or to identify runaway tasks.

 sys.dm_tran_*. This set of DMVs provides details about current transactions and

isolation. For example, the sys.dm_tran_active_transactions DMV returns transaction

details for a SQL Server instance.

 sys.dm_io_*. This set of DMVs provides insight into the I/O activity in SQL Server. For

example, sys.dm_io_pending_io_requests identifies pending I/O requests that SQL

Server has initiated.

 sys.dm_db_*. This set of DMVs provides details about the database and database-level

objects such as tables and indexes. For example, sys.dm_db_index_physical_stats is a

DMF that returns fragmentation information across all indexes in a database or for a

specific index.

For a complete list of DMOs in SQL Server 2016, see the topic Dynamic Management Views

and Functions (TransactSQL) in SQL Server Technical Documentation.

Page 27

White Paper | Microsoft SQL Server for Teamcenter Best Practices

27

6.9 Database Engine Tuning Advisor

The Database Engine Tuning Advisor is a graphical and command-line tool that analyzes how

the SQL Server Database Engine processes queries and makes recommendations for improving

the performance of queries through the creation of indexes, partitions, indexed views, and

statistics. It is provided with SQL Server and can consume a trace file, analyze the queries that

are captured, and then provide details of:

• New indexes and statistics that can increase query performance.

• Suggest partition strategy.

• The usage of existing indexes.

6.10 Diskspd

Diskspd is a command line utility, developed by Microsoft, for load generation and performance

testing of storage I/O subsystems. Although Diskspd is not specifically designed for simulating

SQL Server I/O activity, it can be configured to do so. Diskspd replaces SQLIO, an older utility

that had a similar purpose.

Diskspd is suitable for use when performance tuning I/O subsystems because, for a given set of

parameters, the load that is generated will always be the same.

Diskspd is available as a download from Microsoft. Detailed instructions on simulating SQL

Server I/O activity, and instructions on how to interpret the results, are included in a document

that is packaged with the Diskspd download (UsingDiskspdforSQLServer.docx)

6.11 Live Query Statistics

When working with SQL Server 2016, a new feature called Live Query Statistics offers a

dynamic way to view the actual execution plan for a query. When Live Query Statistics is

enabled (on the Query menu, click Include Live Query Statistics), counts of rows and other

properties of the actual execution plan are displayed and updated in real time.

Note: Be aware that gathering the information required to run Live Query Statistics will place

additional load on your SQL Server instance.

Page 28

White Paper | Microsoft SQL Server for Teamcenter Best Practices

28

7 Known Issues

7.1 Ghost records

 Records that have been logically deleted but physically exist on a page.

 Simplifies keyrange locking and transaction rollback.

 A record is marked as deleted by setting a bit. A ghost cleanup process physically deletes

 the ghost records after the calling transaction commits.

7.1.1 How to prevent Ghost Records from being an issue

Once the user number reach around 50 to 100 you will see a lot of dead-locks caused by lock

escalation. You have to enable read committed snapshot isolation to avoid this issue.

You must set ALLOW_SNAPSHOT_ISOLATION ON and

READ_COMMITTED_SNAPSHOT ON to make this work.

Once enabled a row version for each transaction is maintained in tempdb. The versions are

maintained until the transaction is complete. A simple select is considered a transaction and

requires a commit to compete it.

The problems come from long running transactions as they build a huge number of rows version

in the tempdb. So, for example IDSM can make a simple select and repeats it without a commit;

the result is a huge number of row versions.

In TC 11.2.2 we added TC_MSSQL_SELECT_AUTOCOMMIT=True.

If you sent this as the default for TC it adds between 5 and 10% overhead. So, this should only

be set it for long running processes like IDSM, T4S etc.

Consider setting the index FillFactor to 20% for the POM_M_LOCK, POM_R_LOCK,

PPOM_SESSION, POM_F_LOCK, POM_LOCK, POM_LOCK_LOGGING,

PM_PROCESS_LIST tables. They have a high insert/delete load, which leaves a lot of ghost

records when using snapshot isolation. The Fillfactor should make it easier to insert new records

in the indexes without constantly tearing the pages.

7.2 Cardinality Estimator Bug

SQL Server 2014 introduced a new Cardinality Estimator (CE) which can cause Teamcenter

problems.

 If the SQL Server installation is upgraded the database compatibility is kept the previous

level and you should not see an issue.

Page 29

White Paper | Microsoft SQL Server for Teamcenter Best Practices

29

 If the SQL Server is a new install and a database import the compatibility is at the new

level

 If the system experiences performance issues you can:

 Revert to the old CE

ALTER DATABASE

 SCOPED CONFIGURATION

 SET LEGACY_CARDINALITY_ESTIMATION = ON;

 go

 Or revert to the old optimizer

ALTER DATABASE <yourDatabase>

 SET COMPATIBILITY_LEVEL = 110;

go

This still seems to still be an issue in SQL Server 2016.

Note: Also set TC_ODBC_NO_PREPARE=True to prevent pointless additional database calls.

This is defaulted on at 11.2.3

8 Checklist
For convenience, the following checklist summarizes and consolidates the best practices

discussed in this paper. After familiarizing yourself with the preceding in-depth discussion, you

can use this as a reminder to cover all the recommended best practices. Use a dedicated database

server and instance.

 Use a dedicated database server and instance.

 Choose the right SQL Server Edition (Standard or Enterprise) for your needs.

 Use 64-bit SQL Server if your hardware allows.

 Choose a high availability strategy.

 Use a low-privilege Windows account for the SQL Server and SQL Agent services.

 Grant the Perform volume maintenance tasks permission to the SQL Server service account

to allow fast file initialization.

 Set the collation to Latin1_General_BIN when installing SQL Server.

 Set the server Authentication Mode to Mixed.

 Configure the SQL Server Database Engine service and the SQL Server Agent service to

Auto-Start.

Page 30

White Paper | Microsoft SQL Server for Teamcenter Best Practices

30

 Size and place tempdb per best practices (as described in detail in this document).

 Set the maximum server memory for SQL Server per recommendations.

 Set Maximum Degree of Parallelism to 4 and the cost threshold to 50.

 Place the data and log files on physically distinct disk volumes.

 Use RAID 10 for data files; use RAID 10 or RAID 1 for log files.

 Use large initial size for data and log files, based on projected growth.

 Leave automatic file growth enabled

 Spread the PRIMARY filegroup across equal-sized files on multiple disk volumes

(optional).

 Use SQL Server data compression (SQL Server Enterprise Edition only).

 Verify that the Teamcenter database is using the Latin1_General_BIN collation.

 On the Teamcenter database, use the following settings:

 Auto Create Statistics = True

 Auto Update Statistics = True

 Auto Close = False

 Auto Shrink = False Use the Full recovery model for the Teamcenter database.

 Use the Full recovery model for the Teamcenter database.

 Ensure frequent transaction log backups are scheduled to prevent the log file from growing

out of control.

 Plan and implement an effective backup strategy.

 Test database restore using live backups.

 Be sure to back up the master and msdb databases in addition to the Teamcenter database.

 Monitor index fragmentation, and defragment when necessary.

 Check database integrity before backups to ensure the data will be good to restore.

 Monitor space used.

 Use SQL Server Agent jobs and alerts to automate and schedule maintenance and

monitoring.

 Run the index_verifier monthly.

 Get familiar with SQL Server monitoring tools, and establish a baseline performance

profile for your system.

Page 31

White Paper | Microsoft SQL Server for Teamcenter Best Practices

31

9 Links for Further Information
 Ola Hallengren’s website https://ola.hallengren.com/sql-server-index-and-statistics-

maintenance.html

 Planning a SQL Server Installation https://docs.microsoft.com/en-us/sql/sql-

server/install/planning-a-sql-server-installation

 What’s New in SQL Server 2016 https://docs.microsoft.com/en-us/sql/sql-server/what-s-

new-in-sql-server-2016

https://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html
https://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html
https://docs.microsoft.com/en-us/sql/sql-server/install/planning-a-sql-server-installation
https://docs.microsoft.com/en-us/sql/sql-server/install/planning-a-sql-server-installation
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2016
https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2016

